吴行平
姓名:吴行平 籍贯:重庆北碚 民族:汉族 职称:教授 所在部门(教研室):数学系(分析教研室) 个人主页:https://www.researchgate.net/scientific-contributions/Xing-Ping-Wu-71831696 办公室(电话):best365网页版登录官方网站803 电子邮件:wuxp@swu.edu.cn
|
|
1982年9月至1986年7月于西南师范大学数学系读本科;
1986年8月至1989年6月于西南师范大学数学系读研究生;
1989年6月获硕士学位。
1989年7月留校工作;
1992年晋升为讲师;
1998年6月晋升为副教授;
2004年晋升为教授。
非线性泛函分析、非线性椭圆方程、二阶Hamilton系统
非线性泛函分析、Hamilton 系统;数学分析、实变函数、泛函分析、拓扑学
美国《数学评论》评论员
1. Liu, Xiao-Qi; Wu, Xing-Ping. Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell system with Berestycki-Lions conditions. Appl. Math. Lett. 137 (2023), Paper No. 108505, 7 pp.
2. Zhao, Yu-Xin; Wu, Xing-Ping; Tang, Chun-Lei. Ground state sign-changing solutions for Schrödinger-Kirchhoff-type problem with critical growth. J. Math. Phys. 63 (2022), no. 10, Paper No. 101503, 17 pp.
3. Yin, Li-Feng; Wu, Xing-Ping. Existence and concentration of ground state solutions for critical Schrödinger equation with steep potential well. Comput. Math. Appl. 78 (2019), no. 12, 3862–3871.
4. Tang, Chun-Lei; Wu, Xing-Ping. Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems. J. Differential Equations 248 (2010), no. 4, 660–692.
5. Tang, Chun-Lei; Wu, Xing-Ping. A note on periodic solutions of nonautonomous second-order systems. Proc. Amer. Math. Soc. 132 (2004), no. 5, 1295–1303.
6. Wu, Xing-Ping. Periodic solutions for nonautonomous second-order systems with bounded nonlinearity. J. Math. Anal. Appl. 230 (1999), no. 1, 135–141.
1. 吴行平(4/5); 泛函分析在微分方程中的应用, 重庆市人民政府, 自然科学二等奖, 2003
2. 吴行平(2/5); Hamilton系统的同宿轨与椭圆系统的边值问题, 重庆市人民政府, 自然科学三等奖, 2016