喻厚义
姓名:喻厚义 籍贯:河南信阳市 民族:汉族 职称:副教授 所在部门(教研室):代数几何教研室 办公室(电话):best365网页版登录官方网站705 电子邮件:yuhouyi@swu.edu.cn
|
|
2009.09-2012.06 上海交通大学数学科学学院,理学博士,导师:武同锁
2006.09-2009.06 best365网页版登录官方网站,理学硕士,导师:郭聿琦
2002.09-2006.06 信阳师范学院best365网页版登录官方网站,理学学士
2016.07-至今 best365网页版登录官方网站,副教授
2014.08-2015.07 纽约大学,访问学者
2012.07-2016.06 best365网页版登录官方网站,讲师
代数表示,代数组合
高等代数,抽象代数,同调代数,交换代数,反射群与Coxeter群,组合数学
美国Mathematical Review、德国zbMATH评论员
1. 国家自然科学基金面上项目,组合Hopf代数及其罗巴代数结构,2021.01—2024.12,主持.
2. 重庆市自然科学基金面上项目,弱拟对称函数,2019.07—2022.06,主持.
3. 国家自然科学基金青年基金项目,自由罗巴代数与拟对称函数,2016.01—2018.12,主持.
4. 国家自然科学基金数学天元基金项目,有限局部交换环与零化理想图,2015.01—2015.12,主持.
5. 重庆市自然科学基金面上项目,交换环的零化理想图及其理想单纯复形,2014.07—2017.06,主持.
1. H.Y. Yu, D. Xu, On the cancellation-free antipode formula for the Malvenuto-Reutenauer Hopf algebra, European J. Combin., 13 (2023), 103745.
2. T. Zhang, H.Y. Yu*, The Coincidence of the Bruhat Order and the Secondary Bruhat Order on A(n, k), Order, 2023, https://doi.org/10.1007/s11083-023-09627-9.
3. L. Guo, J.-Y. Thibon, H.Y. Yu*, The Hopf algebras of signed permutations, of weak quasi-symmetric functions and of Malvenuto-Reutenauer, Adv. Math., 374 (2020), 107341.
4. W.W. Jia, Z.P. Wang, H.Y. Yu*, Rigidity for the Hopf algebra of quasi-symmetric functions, Electron. J. Combin., 26 (2019), #P3.4.
5. H.Y. Yu, L. Guo, J.-Y. Thibon, Weak quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras, Adv. Math., 344 (2019), 1–34.
6. H.Y. Yu, L. Guo, Characteristics of RotaBaxter algebras, Comm. Algebra, 47 (2019), 2157–2171.
7. Z.P. Wang, J. Leng, H.Y. Yu, On subdirectly irreducible regular bands, Turkish J. Math., 41 (2017), 1337–1343.
8. H.Y. Yu, L. Guo, J.Q. Zhao, Rota-Baxter algebras and left weak composition quasi-symmetric functions, Ramanujan J., 44 (2017), 567–596.
9. J. Guo, T.S. Wu, H.Y. Yu, On rings whose annihilating-ideal graphs are blow-ups of Boolean graphs, J. Korean Math. Soc., 54 (2017), 847–865.
10. H.Y. Yu, Classification of monomial Rota-Baxter operators on k[x], J. Algebra Appl., 15 (2016), 1650087, 16pp.
11. H.Y. Yu, T.S. Wu, Commutative rings R whose C(AG(R)) consist of only triangles, Comm. Algebra, 43 (2015), 1076–1097.
12. H.Y. Yu, T.S. Wu, W.P. Gu, Artinian local rings whose annihilating-ideal graphs are star graphs, Algebra Colloq., 22 (2015), 73–82.
13. Z.P. Wang, H.Y. Yu, Completely regular semigroups for which every congruence on each D-Class extends to a congruence on the whole semigroup, Comm. Algebra, 43 (2015), 763–777.
14. M. Ye, T.S. Wu, Q. Liu, H.Y. Yu, Implements of graph blow-up in co-maximal ideal graphs, Comm. Algebra, 42 (2014), 2476–2483.
15. T.S. Wu, H.Y. Yu, D.C. Lu, The structure of finite local principal ideal rings, Comm. Algebra, 40 (2012), 4727–4738.
16. H.Y. Yu, Z.P. Wang, T.S. Wu, M. Ye, Classification of some τ-congruence-free completely regular semigroups, Semigroup Forum, 84 (2012), 308–322.
17. H.Y. Yu, Z.P. Wang, The refined semilattice construction of locally orthodox regular cryptogroups, Comm. Algebra, 40 (2012), 552–564.
18. H.Y. Yu, Z.P. Wang, Good homomorphisms between regular orthocryptou semigroups. Adv. Math. (China), 40 (2011), 731–740.