黄启华




基本信息


姓名:黄启华

籍贯:湖北省武穴市

民族:汉

职称:教授

所在部门(教研室):微分方程

个人主页:https://www.scholat.com/qihua

办公室(电话):best365网页版登录官方网站905室

电子邮件:qihua@swu.edu.cn





教育背景


博士:美国 University of Louisiana at Lafayette, 应用数学专业

硕士:武汉大学,基础数学专业

本科:湖北师范大学,数学与应用数学专业




工作经历


2016年至今, best365网页版登录官方网站,教授

2011年8月至20166月,加拿大 University of Alberta, 生物数学中心,博士后,合作导师为 Mark Lewis 教授 (加拿大皇家科学院院士, Canada Research Chair in Mathematical Biology




研究领域


生物数学,偏微分方程,数值分析




主讲课程


[1] 研究生课程:生物数学,应用偏微分方程

[2] 本科生课程:常微分方程,数学建模,概率统计,高等数学,线性代数




学术兼职


[1] 美国“数学评论”评论员

[2] 湖北科技学院“揽月学者”特聘教授




代表性项目


[1] 国家自然科学基金面上项目:斑块和树状河流生态系统研究,2023年1月至2026年12月,45万元,主持。

[2] 国家自然科学基金面上项目:污染物对河流种群生态系统的影响,2019年1月至2022年12月,50万元,主持。

[3] 重庆市留学人员回国创新支持计划重点项目:2019年4月至2022年4月,12万元,主持。




代表性论文


(* 表示通讯作者)

[1] P. Zhou and Q. Huang*,A spatiotemporal model for the effects of toxicants on populations in a polluted river,SIAM Journal on Applied Mathematics, 82 (2022), 95-118.

附注:该论文在美国工业与应用数学的官方网站上被报道,详见“New model examines the effects of toxicants on populations in polluted rivers",链接:

https://sinews.siam.org/Details-Page/new-model-examines-the-effects-of-toxicants-on-populations-in-polluted-rivers

[2] M. Wang, Y. Zhang, and Q. Huang*, A stage-structured continuous-/discrete-time population model: persistence and spatial spread, Bulletin of Mathematical Biology, 84 (2022), Article number: 135, 29 pages.

[3] Q. Huang and Y. Zhang*, Spread rates of a juvenile-adult population in constant and temporally variable environments, Theoretical Ecology, 14 (2021), 145-160.

[4] K. Deng and Q. Huang*, A hybrid parabolic and hyperbolic equation model for a population with separate dispersal and stationary stages: well-posedness and population persistence, SIAM Journal on Applied Mathematics, 79 (2019), 2265-2287.

[5] C. Shan and Q. Huang*, Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment, Journal of Mathematical Biology, 78 (2019), 739-766.

[6] Q. Huang, G. Seo*, and C. Shan, Bifurcations and global dynamics in a toxin-dependent aquatic population model, Mathematical Biosciences, 296 (2018), 26-35.

[7] Q. Huang*, H. Wang, and M. A. Lewis, A hybrid continuous/discrete-time model for invasion dynamics of zebra mussels in rivers, SIAM Journal on Applied Mathematics,

77 (2017), 854-880.

附注:该论文被SIAM News的Associate Editor专门撰文在美国工业与应用数学的官方网站上进行了报道详见:"Modeling invasive activity zebra mussels infiltration of  North American rivers",

链接:https://sinews.siam.org/Details-Page/modeling-invasive-activity-zebra-mussels-infiltration-of-north-american-rivers

[8] Q. Huang*, H. Wang, A. Ricciardi, and M. A. Lewis, Temperature- and turbidity-dependent competitive interactions between invasive freshwater mussels, Bulletin of Mathematical Biology, 78 (2016), 353-380.

[9] Q. Huang*, Y. Jin and M. A. Lewis, R0 analysis of a benthic-drift model for a stream population, SIAM Journal on Applied Dynamical Systems, 15 (2016), 287-321.

[10] Q. Huang*, H. Wang, and M. A. Lewis, The impact of environmental toxins on predator-prey dynamics, Journal of Theoretical Biology, 378 (2015), 12-30.

[11] Q. Huang* and M. A. Lewis, Homing fidelity and reproductive rate for migratory populations, Theoretical Ecology, 8 (2015), 187-205.

[12] Q. Huang*, L. Parshotam, H. Wang, C. Bampfylde, and M. A. Lewis, A model for the impact of contaminants on fish population dynamics, Journal of Theoretical Biology, 334 (2013), 71-79.